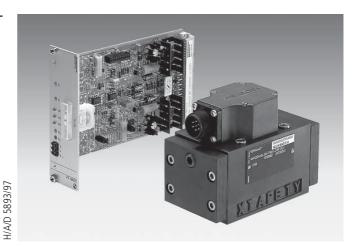
RE 29 583/07.03

Replaces: 10.02

Servo directional valve of 4-way design Type 4WS.2E...


Nominal size 10
Series 5X
Maximum operating pressures 315 bar
Maximum flow 180 L/min

Type 4WSE2ED 10-5X/...B...K31EV

Overview of contents

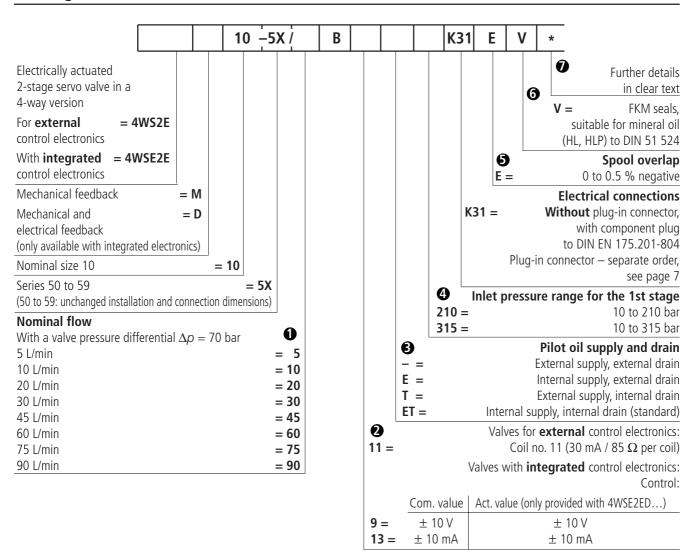
Contents	Page
Features	1
Ordering details	2
Test unit	3
Preferred types, symbols	3
Function, section	4 and 5
Technical data	6 and 7
Control electronics	7
Plug-in connector, electrical connections	7 and 8
Characteristic curves	9 to 15
Unit dimensions, subplates	16 to 18
Pilot oil supply and drain, flushing plate	19

Type 4WS2EM 10-5X/...B...K31EV

Features

- Valve control for closed loop position, force and speed control
- 2-stage servo valve with mechanical or mechanical and electrical feedback
- 1st stage as jet/flapper plate amplifier
- For subplate mounting,
 Porting pattern to DIN 24 340 form A10 with ports X and Y
 Subplates to catalogue sheet RE 45 054 (separate order)
- Dry torque motor, no contamination of the magnetic gap by the pressure fluid
- Can also be used as a 3-way version
- Wear-free spool return element
- Three control variants

- Control:
 - External electronics in Eurocard or modular format (separate order), see page 7
 - Or with the electronics integrated into the valve
- Valve and integrated electronics are adjusted and tested
- Pilot oul supply and drain, internal/external can be changed without dismantiling the valve
- Spool with flow force compensation
- Pressure chamnbers in the control bush have gap seals, no O-ring wear
- Filter for 1st stage is externally accessible



© 2003

by Bosch Rexroth AG, Industrial Hydraulics, D-97813 Lohr am Main

All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated using electronic systems, in any form or by any means, without the prior written authorisation of Bosch Rexroth AG. In the event of contravention of the above provisions, the contravening party is obliged to pay compensation.

4WS.2E... **1/**20 RE 29 583/07.03

Nominal flow

The nominal flow refers to a 100 % command value signal at a valve pressure differential of 70 bar (35 bar per control land). This valve pressure differential is to be considered as a reference value. Other values cause a change to the flow.

A possible nominal flow tolerance of \pm 10 % (see flow signal function on page 9) must be taken into consideration.

2 Electrical control data

Valves for **external** control electronics: The control signal has to be generated by a current regulated output stage. For servo amplifiers see page 7.

Valves with **integrated** control electronics: For valves with integrated control electronics the command value can be a voltage (ordering code "9") or where there is extensive cabling (> 25 m between the control and valve) as a current (ordering code "13").

Pilot oil

Care should be taken to ensure that the pilot oil supply pressure is as constant as possible. It is therefore often advantageous to provide an external pilot control via port X. To positively influence the dynamics, the valve can be operated with a higher pressure at port X than at port P.

Ports X and Y are also pressurised with "internal" pilot oil supply.

4 Inlet pressure range

The system pressure should be held as constant as possible. Pilot pressure range: 10 to 210 bar or 10 to 315 bar With reference to the dynamics the frequency relationship within the permissible pressure range has to be taken into account.

5 Spool overlap

The spool overlap given in % relates to the nominal stroke of the control spool.

Further spool overlaps are available on request!

6 Seal materials

If a different seal material is required please consult us!

• Further details in clear text

Here special requirements should be stated in clear text. Following the receipt of an order these requirements will be checked at the factory and valve code supplemented with an additional number. **Test unit** (battery operated, optionally with a power supply) to catalogue sheet RE 29 681

Attention:

Only for valves with external control electronics

Test unit for proportional and servo valves with integrated control electronics

Type VT-VET-1, series 1X to catalogue sheet RE 29 685.

The test unit is used for the control and for functional testing of proportional and servo valves with integrated electronics. It is suitable for testing valves with an operating voltage of \pm 15 V or 24 V.

The following modes of operation are possible:

- External operation → passing on the operating voltage and command values from the control cabinet to the valve
- Internal/external operation → command value via the test unit; operating voltage from the control cabinet
- Internal operation → operating voltage via a separate power supply; command value via the test unit
- Command values via the BNC socket \rightarrow optional operational voltage

Preferred types (readily available)

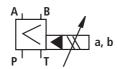
Valves for external control electronics, mechanical feedback

Material No.	Type 4WS2EM
R900785537	4WS2EM 10-5X/5B11ET315K31EV
R900956128	4WS2EM 10-5X/10B11ET315K31EV
R900909227	4WS2EM 10-5X/20B11ET315K31EV
R900949285	4WS2EM 10-5X/30B11ET315K31EV
R900909297	4WS2EM 10-5X/45B11ET315K31EV
R900949286	4WS2EM 10-5X/60B11ET315K31EV
R900909219	4WS2EM 10-5X/75B11ET315K31EV
R900922801	4WS2EM 10-5X/90B11ET315K31EV

Valves with integrated control electronics, mechanical feedback

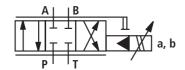
Material No.	Type 4WSE2EM
R901006218	4WSE2EM 10-5X/5B9ET315K31EV
R901006216	4WSE2EM 10-5X/10B9ET315K31EV
R900946690	4WSE2EM 10-5X/20B9ET315K31EV
R900949287	4WSE2EM 10-5X/30B9ET315K31EV
R900949288	4WSE2EM 10-5X/45B9ET315K31EV
R900946396	4WSE2EM 10-5X/60B9ET315K31EV
R900949289	4WSE2EM 10-5X/75B9ET315K31EV
R900909296	4WSE2EM 10-5X/90B9ET315K31EV

Preferred types and standard components are highlighted in the RPS (Standard Price list).

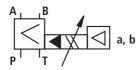

Valves with integrated control electronics, mechanical and electrical feedback

Material No.	Type 4WSE2ED
R901006219	4WSE2ED 10-5X/5B9ET315K31EV
R900780250	4WSE2ED 10-5X/10B9ET315K31EV
R900918001	4WSE2ED 10-5X/20B9ET315K31EV
R900918003	4WSE2ED 10-5X/30B9ET315K31EV
R900921236	4WSE2ED 10-5X/45B9ET315K31EV
R900944398	4WSE2ED 10-5X/60B9ET315K31EV
R900927674	4WSE2ED 10-5X/75B9ET315K31EV
R900918008	4WSE2ED 10-5X/90B9ET315K31EV

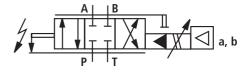
Symbols


Simplified

Valves for external control electronics



Detailed


Mechanical feedback

Valves with integrated control electronics

Electrical and mechanical feedback

Function, section

4WS(E)2EM10-5X/...

The valve types 4WS(E)2EM10-5X/... are electrically actuated, 2-stage servo directional valves with a porting pattern to DIN 24 340 form A10. They are primarily used for the closed loop control of position, force and velocity.

These valves comprise of an electro-mechanical convertor (torque motor) (1), a hydraulic amplifier (flapper jet principle) (2) and a control spool (3) in a bush (2nd stage), that is connected to the torque motor via a mechanical feedback.

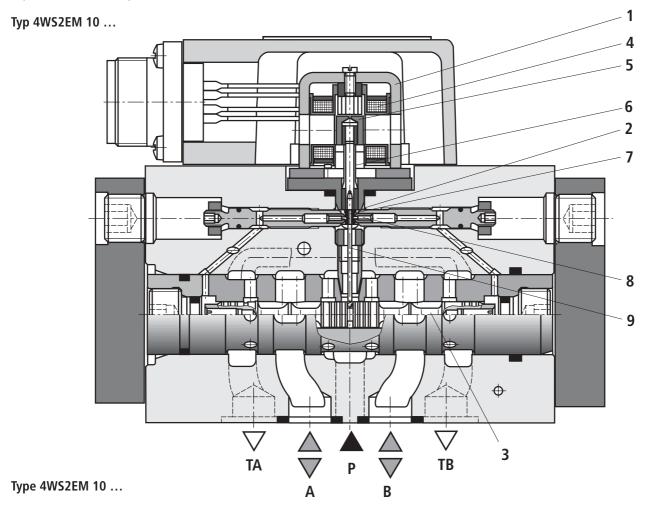
Via an electrical input signal at the coils (4) of the torque motor, a force is generated via a permanent magnet at the armature (5), that in conjunction with a torque tube (6) generates a torque. Due to this the flapper plate (7), which is connected with the torque tube (6) via a rod, is moved out of the central position between the control orifices (8) a pressure differential now results which acts on the front face of the control spool. This pressure differential causes the spool to move, whereby the pressure connection is connected to an actuator connection and at the same time the other actuator connection is connected to the return connection.

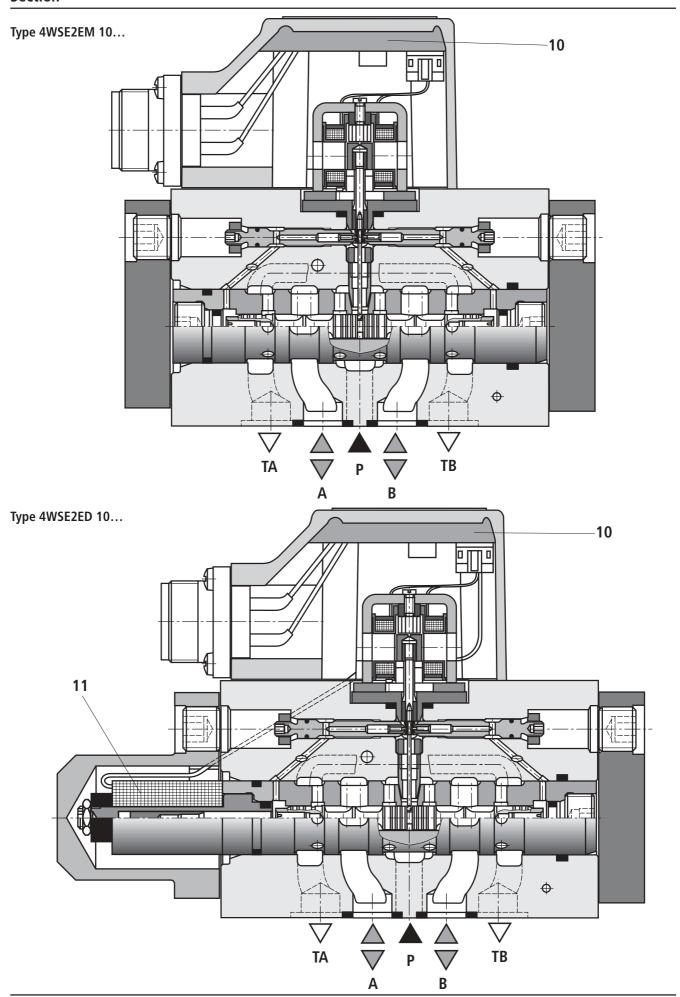
The control spool is connected via a feedback spring (mechanical feedback) (9) to the flapper pate and torque motor. The control spool continues to change position until the torque feedback, via the feedback spring and the electro-magnetic torque of the torque motor are balanced, and the pressure differential at the flapper jet system becomes zero.

The stroke of the control spool and thus the flow through the pilot control valve is closed loop controlled in proportion to the electrical input signal. It has, however to be taken into account that the flow is dependent on the valve pressure differential.

External control electronics, type 4WS2EM10-5X/... (separate order)

External electronics, (servo amplifier), are used to control the valve, they so amplify the analogue input signal (command value) that the controlled current output signal is capable of driving the servo valve.


Integrated control electronics, types 4WSE2EM10-5X/... and 4WSE2ED10-5X/...


For the amplification of the analogue input signal control electronics (10), which are specially matched to this valve, are integrated into the valve. They are built into the torque motor cover plate. The valve zero point can be adjusted by a potentiometer which is externally accessible.

4WSE2ED10-5X/...

This type of valve has in addition to the mechanical control via a feedback spring an electrical spool position acquisition and closed loop control. The spool position is obtained via an inductive position transducer (11). The position transducer signal is compared with the command value via the integrated control electronics (10). Any possible control deviation is electrically amplified and then passed onto the torque motor as a control signal. With the additional electrical feedback it is possible to obtain higher dynamic values in the small signal range than the mechanical version due to the electrical closed loop amplification. The mechanical feedback ensures that, in the case of failure of the electrical power supply, the spool is positioned in the zero range.

The valve is only available with integrated control electronics. The valve zero point can be adjusted by an externally accessible potentiometer.

Technical data (for applications outside these parameters, please consult us!)

	` 11		<u> </u>	· 1							
General											
Porting pattern			DIN 24 340 form A10								
Installation			Optional, it has to be ensured the pilot control is supplied with adequate pressure, (≥ 10 bar) when starting-up the system!								
Storage tempera	ature range		°C	-20 to +8	0						
Ambient temper	rature range		°C	-30 to +7	0 (valves wit	th exte	ernal co	ontrol	electro	nics)	
				-20 to +6	0 (valve with	n integ	grated	electro	nics)		
Weight	With mechanica	al feedback	kg	3.56							
	With mechanica and integrated	l and electrical feedback electronics	k kg	3.65							
Hydraulic (me	easured with H	LP 32, ϑ _{oil} = 40 °C ±	± 5 °C)								
		nge, pilot oil supply	bar	10 to 210	or 10 to 315	5					
	Main valve, por	rts P, A, B	bar	Up to 315							
Return pressure:	Port T	Internal pilot oil dr	rain bar	Permissible	e pressure pe	eaks <	< 100				
		External pilot oil d	rain bar	Up to 315							
	Port Y		bar	Permissible	e pressure pe	eaks <	< 100,	static	< 10		
Pressure fluid				Mineral oil (HL, HLP) to DIN 51 524, other pressure fluids on request!							
Pressure fluid te	mperature range	1	°C	-15 to +80; preferably +40 to +50							
Viscosity range mm ² /s			15 to 380; preferably 30 to 45								
Cleanliness class	s to ISO codes			Maximum permissible degree of contamination of the press fluid is to ISO 4406 (C) class 18/16/13 1)			ressure				
Zero flow $q_{\rm V,L}^{\ \ 2)}$ measured without dither signal		L/min	$\sqrt{\frac{\rho_{p}^{-4}}{70\text{bar}}} \bullet 0, 7 \frac{L}{min} \sqrt{\frac{\rho_{p}^{-4}}{70\text{bar}}} \bullet 0, 9 \frac{L}{min} \sqrt{\frac{\rho_{p}^{-4}}{70\text{bar}}} \bullet 1, 2 \frac{L}{min} \sqrt{\frac{\rho_{p}^{-4}}{70\text{bar}}} \bullet 1, 5 \frac{L}{L} \frac{\rho_$			$\sqrt{\frac{\rho_{\rm p}^{4}}{70{\rm bar}}}$ •1,7 $\frac{{\rm L}}{{\rm min}}$					
Nominal flow q	_{V nom} ± 10 % ³⁾ ssure differential	$\Delta p = 70 \text{ bar}^{5)}$	L/min	5	10	20	30	45	60	75	90
Control spool st	roke		mm		0,29		0,43	0,	74	0,99	1,1
referring to the	nominal stroke (i	ke at mechanical end so n the case of a fault)	top %	120 to 170 120 to 150) to 150			
Feedback syster				mechanical (M) mech. and elektr. (D)					ektr. (D)		
Hysteresis (dithe	<u> </u>		%	, ,							
Reversal span (dither optimised)			%	<u>'</u>							
		%	≤ 0,2 ≤ 0,1								
Pressure amplification 1 % spool stroke change (from the hydraulic zero point)		% of p_{P}	≥30			≥ 60 ≥ 80		≥80			
Balance current over the entire operating pressure range %		≤ 3, long term ≤ 5				≤ 2					
Zero displaceme	ent with changes										
Pressure fluid temperature %/20 °C					≤ 2						
Ambient temperature %/20 °C		≤ 1				≤ 2					
		sure 80 to 120 % of $p_{\rm P}$	%/100 bar	≤ 2 ≤ 2							
	Return pressu	re 0 to 10 % of $p_{\scriptscriptstyle P}$	%/bar		≤ 1					≤ 1	

¹⁾ The cleanliness class stated for the components must be adhered too in hydraulic systems. Effective filtration prevents faults from occuring and at the same time increases the component service life.

For the selection of filters see catalogue sheets RE 50 070, RE 50 076 and RE 50 081.

 $\begin{array}{ll} \begin{array}{ll} \text{2)} & q_{\text{V,L}} & = \text{Zero flow in L/min} \\ \text{3)} & q_{\text{V nom}} & = \text{Nominal flow (entire valve) in L/min} \\ \text{4)} & p_{\text{P}} & = \text{Operating pressure in bar} \\ \text{5)} & \Delta p & = \text{Valve pressure differential in bar} \end{array}$

Technical data (for applications outside these parameters, please consult us!)

Electrical Feedback system Mechanical "M" Mechanical and electrical "D" Valve protection to EN 60 529 IP 65 with mounted and fixed plug-in connector Signal type Analogue Nominal current per coil mA 30 Resistance per coil Ω 85

Recommended superimposed The amplitude is dependent on the hydraulic system: dither signal: f = 400 Hz max. 5 % of the nominal current

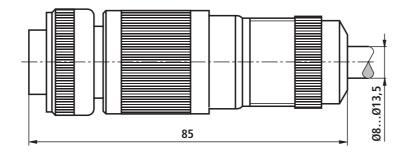
Н

Н

Electrical, external control electronics (only version "M")

Parallel connection

Amplifier	Eurocard format	Analogue	Type VT-SR2-1X/ to catalogue sheet RE 29 980
(separate order)	Module format	Analogue	Type VT 11021 to catalogue sheet RE 29 743


Note: For details regarding the **environmental simulation test** covering EMC (electro-magnetic compatibility), climate and mechanical loading see RE 29 583-U (Declaration regarding environmental compatibility).

Plug-in connectors

Inductivity at 60 Hz

and 100% nom. current: Serial connection

Plug-in connector to DIN EN 175.201-804 Separate order under Material No. **R900223890** (metal version)

1.0

0.25

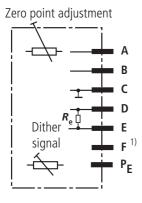
Electrical connections, external control electronics

Type 4WS2EM 10-5X...

The electrical connections can be made in either series or parallel. Due to operational safety reasons and the low coil inductivity, we recommend the parallel connection.

The bridge E-F can be used for the electrical recognition that the plug is correctly connected or for cable break recognition.

Parallel connection: In the plug-in connector connect contact A with B and C with D.


Serial connection: In the plug-in connector connect contact B with C.

Electrical control from A (+) to D (-) causes a flow direction of P to A and B to T. By reversing the electrical control the direction of flow is P to B and A to T.

 $E \rightarrow F = Bridge$

Type 4WSE2EM 10-5X/...

Type 4WSE2ED 10-5X/...

		Current	Voltage
	Plug-in connector	control	control
	allocation	Control "13"	Control "9"
Power	А	+ 15 V	+ 15 V
supply	В	– 15 V	– 15 V
(± 3 %)	С	Т	Т
-	D	± 10 mA	± 10 V
Command value	Е	$R_{\rm e} = 100 \ \Omega$	$R_{\rm e} \ge 50 \text{ k}\Omega$
Measurement output for control spool	t F ¹⁾	\pm 10 mA $^{2)}$ max. ohmic load 1 k Ω	\pm 10 V against \perp ²⁾ $R_{\rm i} \approx$ 4.7 k Ω
		•	

¹⁾ For valves with mechanical feedback connection F is not allocated.

2)	With	spool	nominal	stroke
----	------	-------	---------	--------

Zero point adjustment	
	— A
` — -	B
1	– C
R	D
″e ↓	= E
→ - → - →	– F
	■ P _E
	Zero point adjustment

Power consumption	A B	max. 150 mA	max. 150 mA
at plug-in connector connection	D E	0 to ± 10 mA	≤ 0.2 mA

Power supply: \pm 15 V \pm 3 %, residual ripple < 1 %

Command value: Command value at plug-in connector connection D = positive against plug-in connector connection E

causes a flow from P to A and B to T.

Measurement output F has a positive signal against \bot .

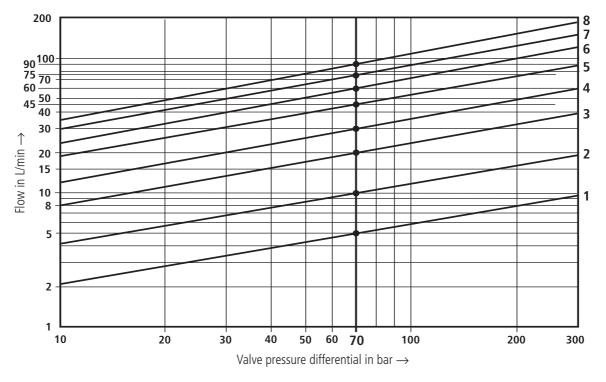
Command value at plug-in connector connection D = negative against plug-in connector connection E

causes a flow from P to B and A to T.

Measurement output F has a negative signal against \bot .

Measurement ouput: The voltage signal is proportional to the control spool stroke.

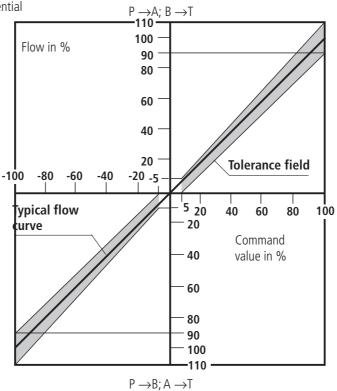
Note: Electrical signals (e.g. actual value) obtained via the valve electronics must not be used to switch-off the machine safety functions!


(Also see European standard regulations "Safety requirements of fluid technology systems and components – hydraulics "EN 982!)

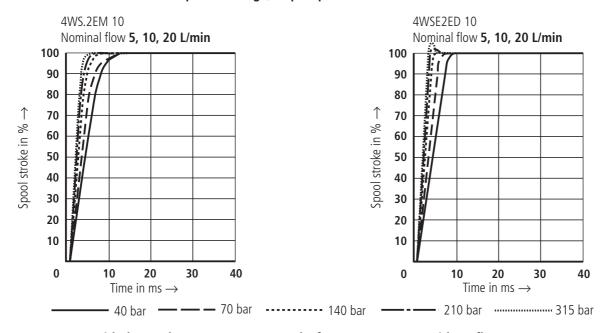
Flow-load function (folerance \pm 10 %)

at 100 % command value signal

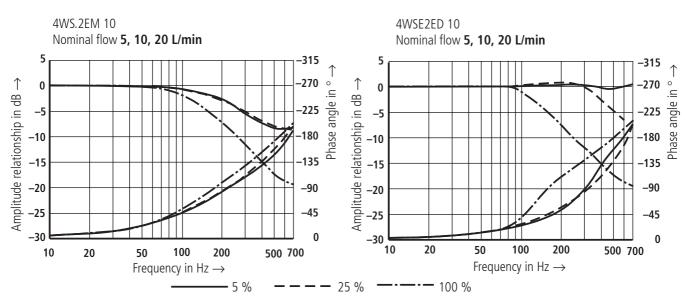
Nominal flow

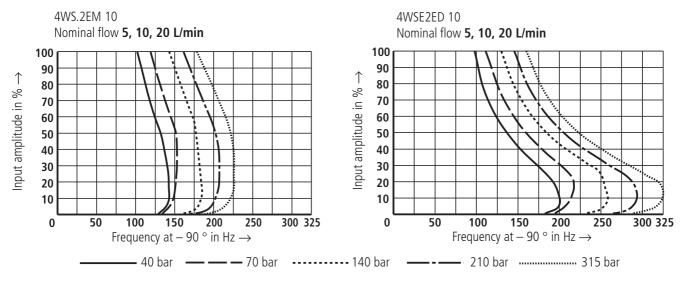

5 L/min \triangleq curve **1** 30 L/min \triangleq curve **4** 75 L/min \triangleq curve **7** 10 L/min \triangleq curve **2** 45 L/min \triangleq curve **5** 90 L/min \triangleq curve **8** 20 L/min \triangleq curve **3** 60 L/min \triangleq curve **6**

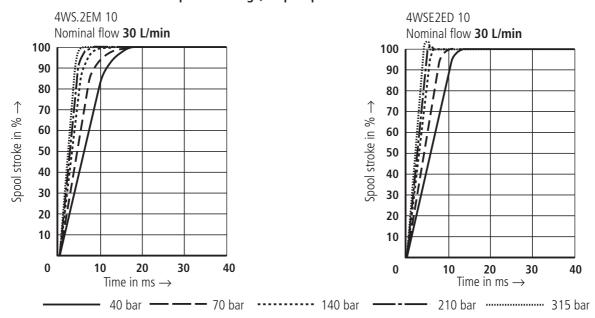
 $\Delta p = \text{Valve pressure differential (inlet pressure } p_{\text{P}} \text{ minus load pressure } p_{\text{L}} \text{ and minus return pressure } p_{\text{T}})$

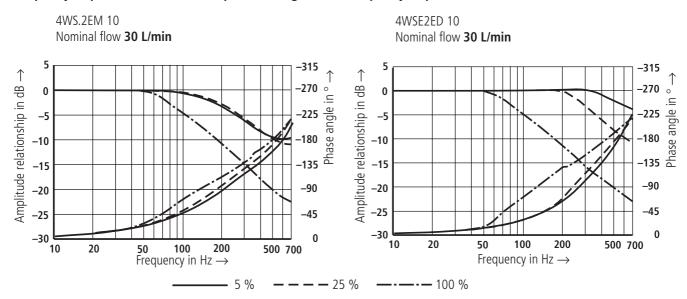

Tolerance field of the flow signal function

at a constant valve pressure differential

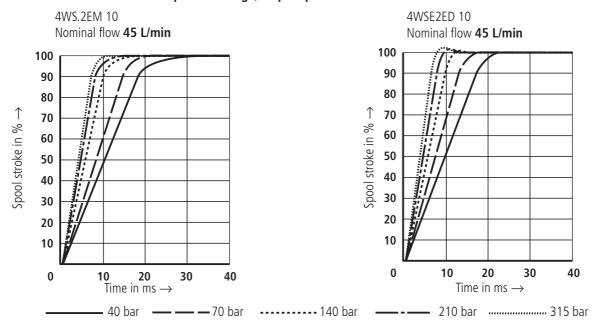


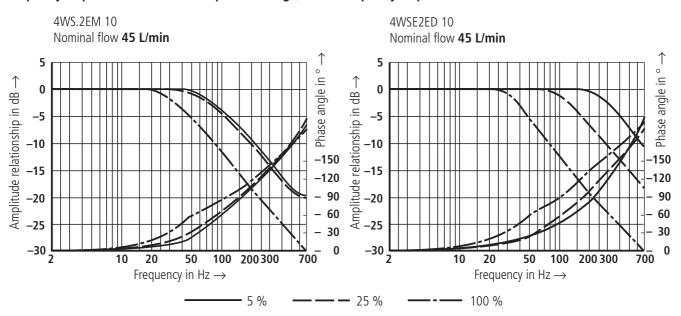

Characteristic curves: types 4WS.2EM 10 and 4WSE2ED 10 (measured with HLP 32, ϑ_{oil} = 40 °C \pm 5 °C)

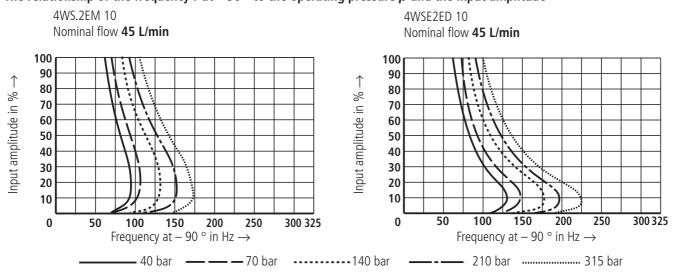

Transient functions with the 315 bar pressure stage, step response without flow

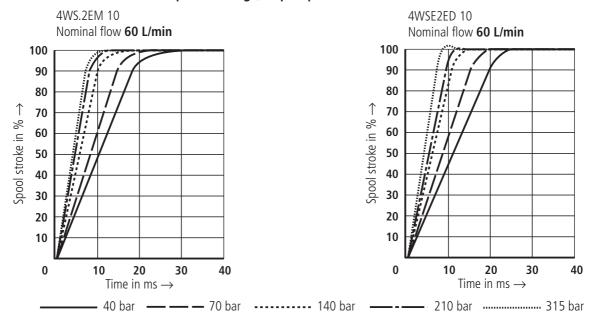

Frequency response with the 315 bar pressure stage, stroke frequency response without flow



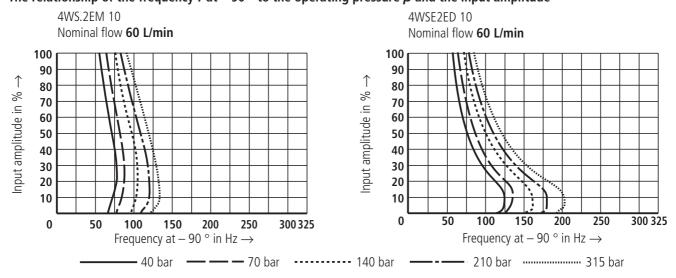

Frequency response with the 315 bar pressure stage, stroke frequency response without flow

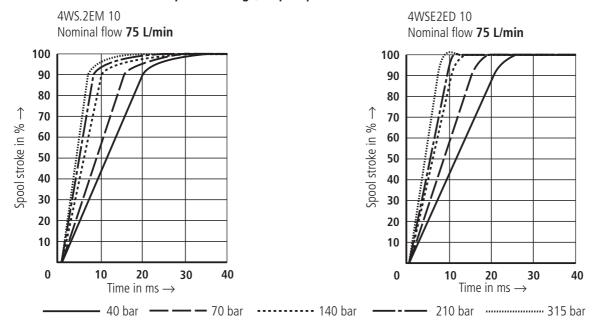


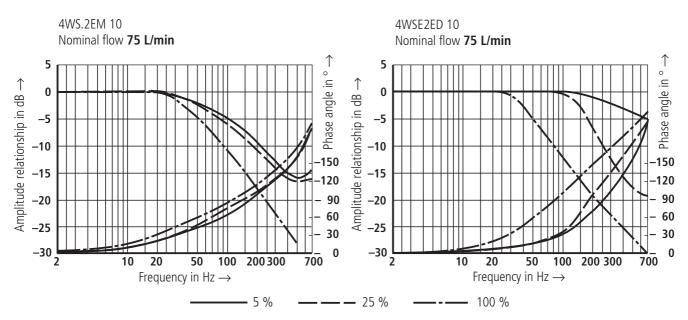

Characteristic curves: types 4WS.2EM 10 and 4WSE2ED 10 (measured with HLP 32, $\vartheta_{oil} = 40 \, ^{\circ}\text{C} \pm 5 \, ^{\circ}\text{C}$)

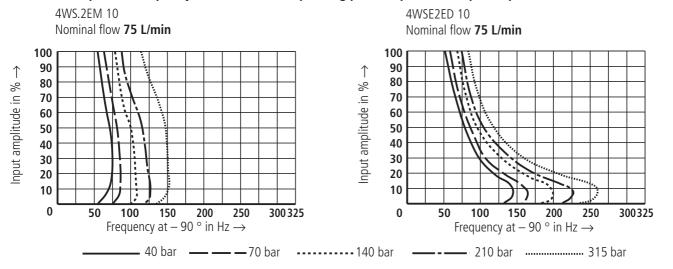

Transient functions with the 315 bar pressure stage, step response without flow

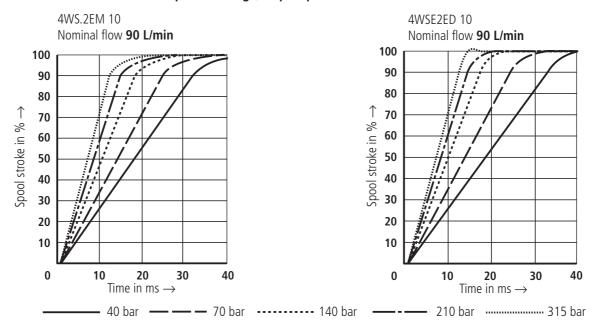
Frequency response with the 315 bar pressure stage, stroke frequency response without flow

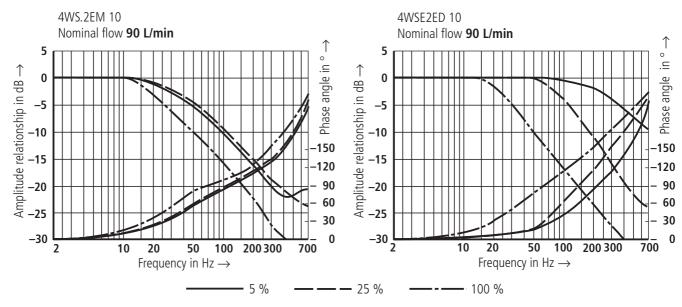


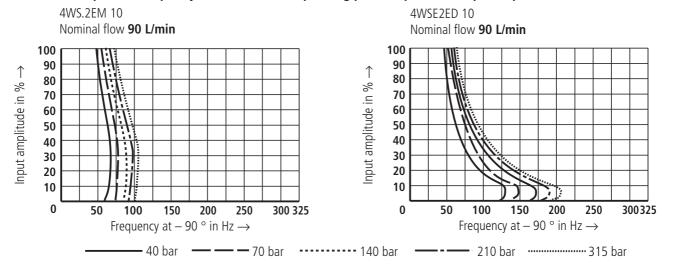


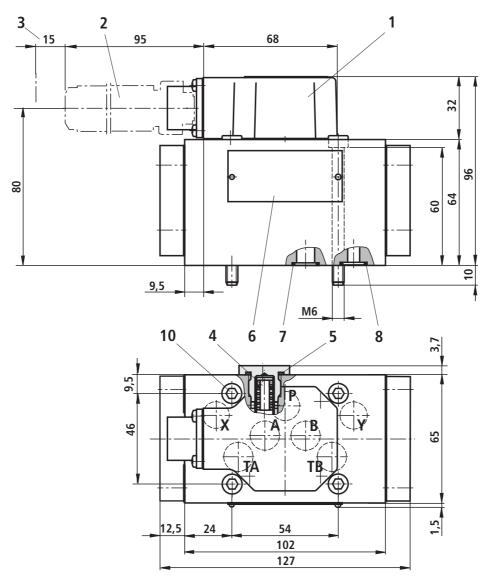

Frequency response with the 315 bar pressure stage, stroke frequency response without flow



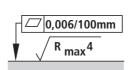


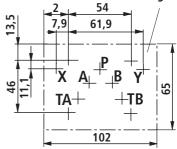

Frequency response with the 315 bar pressure stage, stroke frequency response without flow





Frequency response with the 315 bar pressure stage, stroke frequency response without flow




Mechanical feedback / external control electronics, Type 4WS2EM 10-5X/...

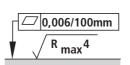
- **1** Cap
- 2 Plug-in connector (separate order, see page 7)
- **3** Space required to remove the plug-in connector, take connection cable into account!
- 4 Exchangeable filter element Material No.: R900306843 with FKM seal 22A/F, $M_{\Delta} = 30 \text{ Nm}$
- **5** Profile seal for filter screw 16 x 1.5 Material No.: **R900012503** (FKM seal)
- 6 Name plate
- 7 Identical seal rings for ports A, B, P, TA and TB
- 8 Identical seal rings for ports X and Y Ports X and Y are also pressurised with the option "internal" pilot oil.
- **9** Machined valve contact area, position of ports to DIN 24 340 form A10, ISO 4401 and CETOP-RP121H
- 10 Valve fixing screws 4 off M6 x 70 DIN 912-10.9 NEL, $M_{\rm A}=$ 16 Nm (are included within the scope of supply)

Required surface finish of the mating piece

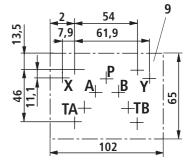
Subplates to catalogue sheet RE 45 054 must be ordered separately.

- G 66/01 (G 3/8)
- G 67/01 (G 1/2)
- G 535/01 (G 3/4)
- G 535/02 (M 27 x 2)
- G 536/01 (G 1)

G 536/02 (M 33 x 2)


With ports X and Y

Mechanical feedback / integrated control electronics


Type 4WSE2EM 10-5X/...

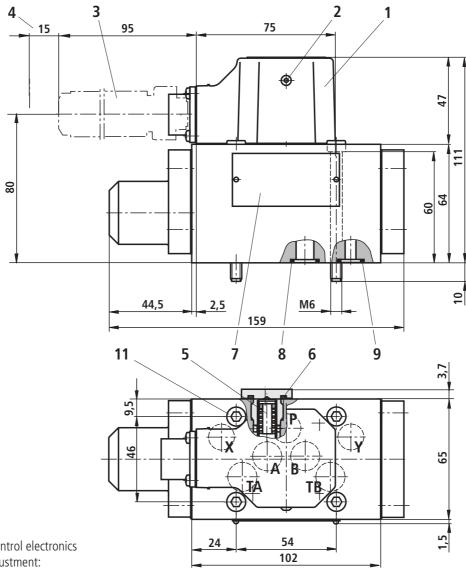
- 1 Cap with integrated control eclectronics
- **2** Electrical zero point adjustment:
 After removing the 2.5A/F plug, a correction, via a potentiometer, to the zero point is possible.
- 3 Plug-in connector (separate order, see page 7)
- **4** Space required to remove the plug-in connector, take connection cable into account!
- 5 Exchangeable filter element Material No.: **R900306843** with FKM seal, 22 A/F, $M_A = 30$ Nm
- **6** Profile seal for filter screw 16 x 1.5 Material No.: **R900306843** (FKM seal)
- 7 Name plate
- 8 Identical seal rings for ports A, B, P, TA and TB
- **9** Identical seal rings for ports X and Y Ports X and Y are also pressurised with the option "internal" pilot oil.
- **10** Machined valve contact area, position of ports to DIN 24 340 form A10, ISO 4401 and CETOP-RP121H
- 11 Valve fixing screws 4 off M6 x 70 DIN 912-10.9 NEL, $M_A = 16$ Nm (are included within the scope of supply)

Required surface finish of the mating piece

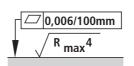
Subplates to catalogue sheet RE 45 054 must be ordered separately.

G 66/01 (G 3/8)

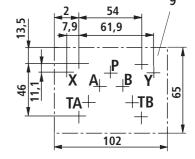
G 67/01 (G 1/2)


G 535/01 (G 3/4)

G 535/02 (M 27 x 2) G 536/01 (G 1)

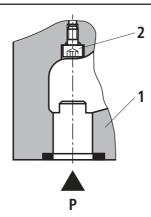

G 536/02 (M 33 x 2)

With ports X and Y


Electrical and mechanical feedback / integrated control electronics Type 4WSE2ED 10-5X/...

- 1 Cap with integrated control electronics
- **2** Electrical zero point adjustment: After removing the 2.5A/F plug, a correction, via potentiometer, to the zero point is possible.
- **3** Plug-in connector (separate order, see page 7)
- **4** Space required to remove the plug-in connector, take connection cable into account!
- 5 Exchangeable filter element Material No.: **R900306843** with FKM seal, 22A/F, $M_A = 30$ Nm
- **6** Profile seal for filter screw 16 x 1.5 Material No.:**R900012503** (FKM seal)
- 7 Name plate
- 8 Identical seal rings for ports A, B, P, TA and TB
- **9** Identical seal rings for ports X and Y ports X and Y are also pressurised with the option "internal" pilot oil.
- **10** Machined valve contact area, position of ports to DIN 24 340 form A10, ISO 4401 and CETOP-RP121H
- **11** Valve fixing screws 4 off M6 x 70 DIN 912-10.9 NEL, $M_A = 16$ Nm (are included within the scope of supply)

Required surface finish of the mating piece


Subplates to catalogue sheet RE 45 054 must be ordered separately.

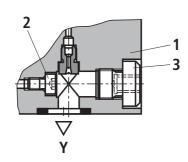
- G 66/01 (G 3/8)
- G 67/01 (G 1/2)
- G 535/01 (G 3/4)
- G 535/02 (M 27 x 2)
- G 333/02 (IVI 27
- G 536/01 (G 1)
- G 536/02 (M 33 x 2)

With ports X and Y

Pilot oil – conversion from internal/external

Pilot oil supply

External pilot oil supply


S.H.C.S. item 2 is fitted.

Internal pilot oil supply

S.H.C.S. item 2 is removed

- 1 Vavle housing
- **2** S.H.C.S. M3 x 5 DIN 912-10.9, $M_{\Delta} = 1.4 \text{ Nm}$

Pilot oil drain

External pilot oil drain

S.H.C.S. item 2 is fitted.

Internal pilot oil drain

S.H.C.S. item 2 is removed

- 1 Vavle housing
- **2** S.H.C.S. M3 x 5 DIN 912-10.9, $M_{\Delta} = 1.4 \text{ Nm}$
- 3 Plug M8 x 1 with seal, Material No. **00017829** $M_{\Delta} = 5 \text{ Nm}$

Flushing plate to DIN 24 340 form A10 (dimensions in mm)

Symbol

With FKM seals, Material No. **R900912450**, Weight: 2 kg

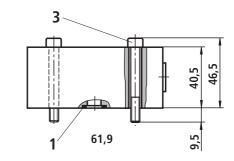
- **1** R-ring 13 x 1.6 x 2 (A, B, P, TA and TB)
- 2 R-ring 11,18 x 1.6 x 1.78 (X, Y)
- 3 4 off S.H.C.S. M6 x 50 DIN 912–10.9, $M_A = 16$ Nm (are included within the scope of supply)
- 4 Porting pattern to DIN 24340, form A10

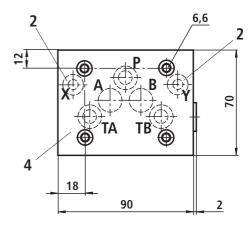
In order to guarantee that the servo valves function correctly, it is absolutely necessary to flush the system before commissioning.

Cleanliness class to ISO code, see page 6.

The following is a guide to the flushing time necessary for the installation:

t = Flushing time in hours


V = Tank contents in litres


 $q_{V} = Pump flow in$

litres per minute

If the tank neecs to be refilled with more than 10 % of its capacity it will be necessary to reflush the system.

A directional control valve with a porting pattern to DIN 24 340 form A10 is more suitable than a flushing plate for the flushing operation, as the actuator lines can also be flushed. Also see catalogue sheet RE 07 700.

Bosch Rexroth AG Industrial Hydraulics

D-97813 Lohr am Main Zum Eisengießer 1 ● D-97816 Lohr am Main Telefon 0 93 52 / 18-0

Telefax 0 93 52 / 18-23 58 • Telex 6 89 418-0 eMail documentation@boschrexroth.de

Internet www.boschrexroth.de

Bosch Rexroth Limited

Cromwell Road, St Neots, Cambs, PE19 2ES Tel: 0 14 80/22 32 56 Fax: 0 14 80/21 90 52

E-mail: info@boschrexroth.co.uk

The data specified above only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information.

The details stated do not release you from the responsibility for carrying out your own assessment and verification. It must be remembered that our products are subject to a natural process of wear and ageing.